Score:0

Fast implementations of verifiable Shamir's Secret shares

sy flag

One way of verifying Shamir's secret shares is to use the technique by Feldman where $c_0,\cdots,c_k$ represent the coefficients of the polynomial $p()$ in $\mathbb{Z}_q$. For verifying share $(i,p(i))$ and public parameters group $G$ of prime order $p, q|p-1$ and generator $g$, the share generator provides $(g,d_0,\cdots,d_k)$ where $d_j=g^{c_j}, j \in\{0,1,\cdots,k\}$. The receiver of the share $s$,checks whether $g^s = \prod_j d_j^{i^j}$. Is there a way to make this checking faster (or any other faster VSS scheme) especially when there is a large number of different shares (the input is high dimensional, one share per dimension) to verified?

mangohost

Post an answer

Most people don’t grasp that asking a lot of questions unlocks learning and improves interpersonal bonding. In Alison’s studies, for example, though people could accurately recall how many questions had been asked in their conversations, they didn’t intuit the link between questions and liking. Across four studies, in which participants were engaged in conversations themselves or read transcripts of others’ conversations, people tended not to realize that question asking would influence—or had influenced—the level of amity between the conversationalists.