fgrieu has shown that $\lim\limits_{h\to\infty} H(h,k) = k$ for any fixed $k$, so I will try to address the second question, that is, whether or not $$\lim\limits_{h\to\infty} h - H(2h,h) = 0$$
In particular, if we let $n = 2^h$, then we are asking whether
$$\lim\limits_{n\to\infty} \lg(n) - n\sum_{j=0}^{n^2}\binom{n^2}{j}\left(\frac{1}{n}\right)^j\left(1-\frac{1}{n}\right)^{n^2-j}\left[\left(\frac{j}{n^2}\right)\lg\left(\frac{n^2}{j}\right)\right] = 0$$
or equivalently, whether
$$\lim\limits_{n\to\infty} \sum_{j=0}^{n^2}\binom{n^2}{j}\left(\frac{1}{n}\right)^j\left(1-\frac{1}{n}\right)^{n^2-j}\left[\lg(n)+\left(\frac{j}{n}\right)\lg\left(\frac{j}{n^2}\right)\right] = 0$$
Note that as $n\to\infty$, the quantity inside the sum
$$\binom{n^2}{j}\left(\frac{1}{n}\right)^j\left(1-\frac{1}{n}\right)^{n^2-j} \approx \mathcal{N}(j \,\vert\, n,n-1)$$
where $\mathcal{N}(x \,\vert\, \mu,\sigma^2)$ is the PDF of the normal distribution with mean $\mu$ and variance $\sigma^2$.
Which we can simply plug into Wolfram Alpha to obtain:
$$\lim\limits_{n\to\infty} \sum_{j=0}^{n^2}\mathcal{N}(j \,\vert\, n,n-1)\times\left[\lg(n)+\left(\frac{j}{n}\right)\lg\left(\frac{j}{n^2}\right)\right] = 0$$
**Edit -- using "Wolfram Alpha" to obtain an answer is not a very rigorous approach (as @kodlu has also pointed out in the comments as well). So, I'll attempt a more rigorous solution here below...
In particular, where $n = 2^h$ just as above, we can express
$$ H(2h, h) = \sum_{j=0}^{n^2}\binom{n^2}{j}\left(\frac{1}{n}\right)^j\left(1-\frac{1}{n}\right)^{n^2-j}\left[\left(\frac{j}{n}\right)\lg\left(\frac{n^2}{j}\right)\right] $$ and observe that this quantity from inside the sum $$\left[\left(\frac{j}{n}\right)\lg\left(\frac{n^2}{j}\right)\right]$$ is bounded from below by the slightly different quantity $$\frac{1}{\ln 2}\times\left[-2\left(\frac{j}{n}\right)^2 + \left(3+\ln n\right)\left(\frac{j}{n}\right) - 1\right]$$ such that $$ H(2h,h) \ge \sum_{j=0}^{n^2}\binom{n^2}{j}\left(\frac{1}{n}\right)^j\left(1-\frac{1}{n}\right)^{n^2-j}\times\frac{1}{\ln 2}\left[-2\left(\frac{j}{n}\right)^2 + \left(3+\ln n\right)\left(\frac{j}{n}\right) - 1\right] \\ = \lg(n) - 2\left(\frac{n - 1}{n^2\ln 2}\right) = h - 2\left(\frac{2^h - 1}{4^h\ln 2}\right)$$ and so $$\lim\limits_{h\to\infty} h - H(2h,h) \le \lim\limits_{h\to\infty} 2\left(\frac{2^h - 1}{4^h\ln 2}\right) = \boxed{0}$$
**Edit #2 -- it seems the same "lower-bound" approach can also be used to answer the first question (demonstrate that
$\lim\limits_{h\to\infty} H(h,k) = k$ for any fixed
$k$) as well!
In particular, where $n = 2^h$ just as above, and $m = 2^k$, we can express $$H(h,k) = m\sum_{j=0}^{n}\binom{n}{j}\left(\frac{1}{m}\right)^j\left(1-\frac{1}{m}\right)^{n-j}\left[\left(\frac{j}{n}\right)\lg\left(\frac{n}{j}\right)\right]$$ and observe that this quantity from inside the sum $$\left[\left(\frac{j}{n}\right)\lg\left(\frac{n}{j}\right)\right]$$ is bounded from below by the slightly different quantity $$\frac{1}{\ln 2}\times\left(\frac{j}{n}\right)\left[-m\left(\frac{j}{n}\right) + \ln(m) + 1\right]$$ such that $$ H(h,k) \ge m\sum_{j=0}^{n}\binom{n}{j}\left(\frac{1}{m}\right)^j\left(1-\frac{1}{m}\right)^{n-j}\times\frac{1}{\ln 2}\left(\frac{j}{n}\right)\left[-m\left(\frac{j}{n}\right) + \ln(m) + 1\right] \\ = \lg(m) - \frac{m-1}{n\ln 2} = k - \frac{2^k-1}{2^h\ln 2}$$ and so $$\lim\limits_{h\to\infty} H(h,k) \ge \lim\limits_{h\to\infty} k - \frac{2^k-1}{2^h\ln 2} = \boxed{k}$$