According to section 4.2 of Pedersen's verifiable secret sharing, given a secret share $(s_i, t_i)$, it is possible to verify that the secret share is valid by using the commitments $E_j$, for $j=0,\ldots,k-1$, by using the formula

$E(s_i, t_i) = E_0 \cdot E_1^{x_i} \cdots E_{k-1}^{x_i^{k-1}}$, i.e. $g^{s_i}h^{t_i}=g^{a_0}h^{b_0} \cdot (g^{a_1}h^{b_1})^{x_i} \cdots (g^{a_{k-1}}h^{b_{k-1}})^{x_i^{k-1}}$.

The following Go method performs the verification step according to Pedersen VSS:

```
type SecretPart struct {
s *big.Int
t *big.Int
}
type Pedersen struct {
threshold int
p *big.Int
g *big.Int
h *big.Int
}
func (p Pedersen) verify(abscissa *big.Int,
part SecretPart,
commitments []*big.Int,
) error {
pMinus := new(big.Int).Sub(p.p, big.NewInt(1))
// rhs = E_0 * E_1^x * ... * E_j^{x^j}
rhs := new(big.Int).Set(commitments[0])
xPow := big.NewInt(1)
for j := 1; j < p.threshold; j++ {
xPow.Mul(xPow, abscissa).Mod(xPow, pMinus)
term := new(big.Int).Exp(commitments[j], xPow, p.p)
rhs.Mul(rhs, term).Mod(rhs, p.p)
}
// lhs = g^s * h^t
term1 := new(big.Int).Exp(p.g, part.s, p.p)
term2 := new(big.Int).Exp(p.h, part.t, p.p)
lhs := new(big.Int).Mul(term1, term2)
lhs.Mod(lhs, p.p)
if lhs.Cmp(rhs) != 0 {
return fmt.Errorf("wrong secret part: lhs=%s != rhs=%s", lhs, rhs)
}
return nil
}
```

Despite the procedure is straightforward, the verification step always fails having the left-hand side term different from the right-hand side one.

Here is a Go Playground with a running show case.