I've got Nvidia Quadro 2000 1GB from year 2010. From Nvidia's CUDA legacy GPUs list i can see it supports compute capability of 2.1.
I found a CUDA compatibility manual with a table of "CUDA Toolkit and Compatible Driver Versions" on page 4.
My driver version is 390.144 (from nvidia-smi
), thus from the table CUDA 9.0 (9.0.76) should support the GPU.
Now I try to find an older version of Pytorch that supports CUDA 9.0. Fortunately, Pytorch 1.1.0 supports CUDA 9.0.
Then I used this command to install this version of Pytorch conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=9.0 -c pytorch
.
Unfortunately, torch.cuda.is_available()
shows False
. Am I doing something wrong?
Btw this is the output of nvidia-smi
command.
(base) hell@Dell-Precision-T1600:~$ nvidia-smi
Sat Dec 25 03:39:47 2021
+---------------------------------------------+
| NVIDIA-SMI 390.144 Driver Version: 390.144 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Quadro 2000 Off | 00000000:01:00.0 On | N/A |
| 33% 61C P0 N/A / N/A | 383MiB / 963MiB | 24% Default |
+-------------------------------+----------------------+----------------------+
+---------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 938 G /usr/lib/xorg/Xorg 93MiB |
| 0 1249 G /usr/bin/gnome-shell 159MiB |
| 0 3903 G ...AAgAAAAAAAAACAAAAAAAAAA= --shared-files 125MiB |
| 0 17545 G ...l/anaconda3/envs/pytorch_try/bin/python 1MiB |
+---------------------------------------------+